import fs from 'fs'; import zlib from 'zlib'; class PNG { static decode(path, fn) { { return fs.readFile(path, (err, file) => { const png = new PNG(file); return png.decode(pixels => fn(pixels)); }); } } static load(path) { { const file = fs.readFileSync(path); return new PNG(file); } } constructor(data) { let i; this.data = data; this.pos = 8; // Skip the default header this.palette = []; this.imgData = []; this.transparency = {}; this.text = {}; while (true) { const chunkSize = this.readUInt32(); let section = ''; for (i = 0; i < 4; i++) { section += String.fromCharCode(this.data[this.pos++]); } switch (section) { case 'IHDR': // we can grab interesting values from here (like width, height, etc) this.width = this.readUInt32(); this.height = this.readUInt32(); this.bits = this.data[this.pos++]; this.colorType = this.data[this.pos++]; this.compressionMethod = this.data[this.pos++]; this.filterMethod = this.data[this.pos++]; this.interlaceMethod = this.data[this.pos++]; break; case 'PLTE': this.palette = this.read(chunkSize); break; case 'IDAT': for (i = 0; i < chunkSize; i++) { this.imgData.push(this.data[this.pos++]); } break; case 'tRNS': // This chunk can only occur once and it must occur after the // PLTE chunk and before the IDAT chunk. this.transparency = {}; switch (this.colorType) { case 3: // Indexed color, RGB. Each byte in this chunk is an alpha for // the palette index in the PLTE ("palette") chunk up until the // last non-opaque entry. Set up an array, stretching over all // palette entries which will be 0 (opaque) or 1 (transparent). this.transparency.indexed = this.read(chunkSize); var short = 255 - this.transparency.indexed.length; if (short > 0) { for (i = 0; i < short; i++) { this.transparency.indexed.push(255); } } break; case 0: // Greyscale. Corresponding to entries in the PLTE chunk. // Grey is two bytes, range 0 .. (2 ^ bit-depth) - 1 this.transparency.grayscale = this.read(chunkSize)[0]; break; case 2: // True color with proper alpha channel. this.transparency.rgb = this.read(chunkSize); break; } break; case 'tEXt': var text = this.read(chunkSize); var index = text.indexOf(0); var key = String.fromCharCode.apply(String, text.slice(0, index)); this.text[key] = String.fromCharCode.apply(String, text.slice(index + 1)); break; case 'IEND': // we've got everything we need! switch (this.colorType) { case 0: case 3: case 4: this.colors = 1; break; case 2: case 6: this.colors = 3; break; } this.hasAlphaChannel = [4, 6].includes(this.colorType); var colors = this.colors + (this.hasAlphaChannel ? 1 : 0); this.pixelBitlength = this.bits * colors; switch (this.colors) { case 1: this.colorSpace = 'DeviceGray'; break; case 3: this.colorSpace = 'DeviceRGB'; break; } this.imgData = Buffer.from(this.imgData); return; default: // unknown (or unimportant) section, skip it this.pos += chunkSize; } this.pos += 4; // Skip the CRC if (this.pos > this.data.length) { throw new Error('Incomplete or corrupt PNG file'); } } } read(bytes) { const result = new Array(bytes); for (let i = 0; i < bytes; i++) { result[i] = this.data[this.pos++]; } return result; } readUInt32() { const b1 = this.data[this.pos++] << 24; const b2 = this.data[this.pos++] << 16; const b3 = this.data[this.pos++] << 8; const b4 = this.data[this.pos++]; return b1 | b2 | b3 | b4; } readUInt16() { const b1 = this.data[this.pos++] << 8; const b2 = this.data[this.pos++]; return b1 | b2; } decodePixels(fn) { return zlib.inflate(this.imgData, (err, data) => { if (err) throw err; var pos = 0; const { width, height } = this; var pixelBytes = this.pixelBitlength / 8; const pixels = Buffer.alloc(width * height * pixelBytes); function pass(x0, y0, dx, dy, singlePass) { if (singlePass === void 0) { singlePass = false; } const w = Math.ceil((width - x0) / dx); const h = Math.ceil((height - y0) / dy); const scanlineLength = pixelBytes * w; const buffer = singlePass ? pixels : Buffer.alloc(scanlineLength * h); let row = 0; let c = 0; while (row < h && pos < data.length) { var byte; var col; var i; var left; var upper; switch (data[pos++]) { case 0: // None for (i = 0; i < scanlineLength; i++) { buffer[c++] = data[pos++]; } break; case 1: // Sub for (i = 0; i < scanlineLength; i++) { byte = data[pos++]; left = i < pixelBytes ? 0 : buffer[c - pixelBytes]; buffer[c++] = (byte + left) % 256; } break; case 2: // Up for (i = 0; i < scanlineLength; i++) { byte = data[pos++]; col = (i - i % pixelBytes) / pixelBytes; upper = row && buffer[(row - 1) * scanlineLength + col * pixelBytes + i % pixelBytes]; buffer[c++] = (upper + byte) % 256; } break; case 3: // Average for (i = 0; i < scanlineLength; i++) { byte = data[pos++]; col = (i - i % pixelBytes) / pixelBytes; left = i < pixelBytes ? 0 : buffer[c - pixelBytes]; upper = row && buffer[(row - 1) * scanlineLength + col * pixelBytes + i % pixelBytes]; buffer[c++] = (byte + Math.floor((left + upper) / 2)) % 256; } break; case 4: // Paeth for (i = 0; i < scanlineLength; i++) { var paeth; var upperLeft; byte = data[pos++]; col = (i - i % pixelBytes) / pixelBytes; left = i < pixelBytes ? 0 : buffer[c - pixelBytes]; if (row === 0) { upper = upperLeft = 0; } else { upper = buffer[(row - 1) * scanlineLength + col * pixelBytes + i % pixelBytes]; upperLeft = col && buffer[(row - 1) * scanlineLength + (col - 1) * pixelBytes + i % pixelBytes]; } const p = left + upper - upperLeft; const pa = Math.abs(p - left); const pb = Math.abs(p - upper); const pc = Math.abs(p - upperLeft); if (pa <= pb && pa <= pc) { paeth = left; } else if (pb <= pc) { paeth = upper; } else { paeth = upperLeft; } buffer[c++] = (byte + paeth) % 256; } break; default: throw new Error(`Invalid filter algorithm: ${data[pos - 1]}`); } if (!singlePass) { let pixelsPos = ((y0 + row * dy) * width + x0) * pixelBytes; let bufferPos = row * scanlineLength; for (i = 0; i < w; i++) { for (let j = 0; j < pixelBytes; j++) pixels[pixelsPos++] = buffer[bufferPos++]; pixelsPos += (dx - 1) * pixelBytes; } } row++; } } if (this.interlaceMethod === 1) { /* 1 6 4 6 2 6 4 6 7 7 7 7 7 7 7 7 5 6 5 6 5 6 5 6 7 7 7 7 7 7 7 7 3 6 4 6 3 6 4 6 7 7 7 7 7 7 7 7 5 6 5 6 5 6 5 6 7 7 7 7 7 7 7 7 */ pass(0, 0, 8, 8); // 1 pass(4, 0, 8, 8); // 2 pass(0, 4, 4, 8); // 3 pass(2, 0, 4, 4); // 4 pass(0, 2, 2, 4); // 5 pass(1, 0, 2, 2); // 6 pass(0, 1, 1, 2); // 7 } else { pass(0, 0, 1, 1, true); } return fn(pixels); }); } decodePalette() { const { palette } = this; const { length } = palette; const transparency = this.transparency.indexed || []; const ret = Buffer.alloc(transparency.length + length); let pos = 0; let c = 0; for (let i = 0; i < length; i += 3) { var left; ret[pos++] = palette[i]; ret[pos++] = palette[i + 1]; ret[pos++] = palette[i + 2]; ret[pos++] = (left = transparency[c++]) != null ? left : 255; } return ret; } copyToImageData(imageData, pixels) { let j; var k; let { colors } = this; let palette = null; let alpha = this.hasAlphaChannel; if (this.palette.length) { palette = this._decodedPalette || (this._decodedPalette = this.decodePalette()); colors = 4; alpha = true; } const data = imageData.data || imageData; const { length } = data; const input = palette || pixels; let i = j = 0; if (colors === 1) { while (i < length) { k = palette ? pixels[i / 4] * 4 : j; const v = input[k++]; data[i++] = v; data[i++] = v; data[i++] = v; data[i++] = alpha ? input[k++] : 255; j = k; } } else { while (i < length) { k = palette ? pixels[i / 4] * 4 : j; data[i++] = input[k++]; data[i++] = input[k++]; data[i++] = input[k++]; data[i++] = alpha ? input[k++] : 255; j = k; } } } decode(fn) { const ret = Buffer.alloc(this.width * this.height * 4); return this.decodePixels(pixels => { this.copyToImageData(ret, pixels); return fn(ret); }); } } export { PNG as default };